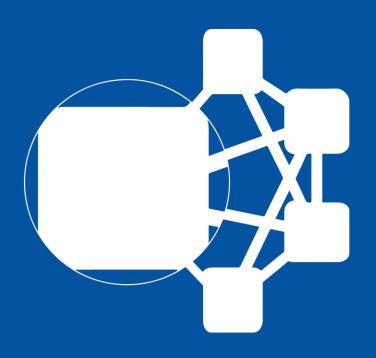


How big data helps secure cloud servers

Igor Seletskiy,
Founder and CEO of CloudLinux

~4M events a day

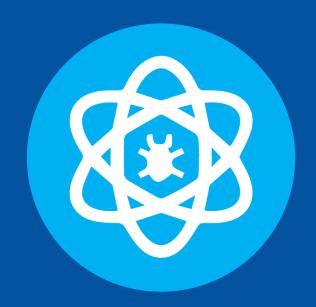

- 4GB of data (with metadata)
- ~20M events if not for IP blocking
- Thousands of servers
- ~1M websites
- 500K distinct IPs / day

What is a lot of data

Infrastructure

- Distributed Ruleset
- Spark Cluster
 - ~1T RAM, 100s cores
- HDFS
 - 3 replicas (going to 6)

Brute force is #1


- WordPress → huge
- Mail → as big
- SSH
- FTP
- Other CMS → Insignificant

Some things are easy to see


- Exploits → small, very spread out
 - WordPress attacks #1
 - Blind scans are common

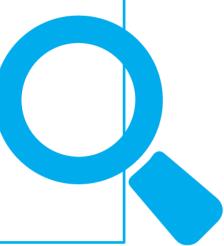
Some things are easy to see

of IPs involved

- Mailbox brute force → subnets
- WordPress → everything
- Exploits → mixed
 - Subnets
 - Specific / 'stable' IPs
 - Datacenters
 - ISPs (DHCP)
 - TOR/VPN/proxy

- ~ 15-20K IPs blacklisted daily
 - 50% of IPs change their profile within 5 days
- More servers → more attackingIPs we see. Non linear...
- Stopping 50x the attacks than a year ago

of IPs involved



Subnets...

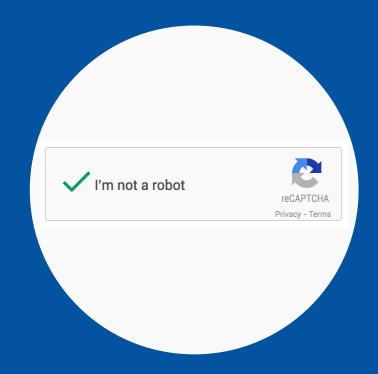
- Not a single Captcha passed
 - WordPress or Mail
- Rarely rotated

103.28.132.* WordPressCrackerBotNet 103.28.133.* WordPressCrackerBotNet 114.223.60.* MailCrackerBotNet 114.223.61.* MailCrackerBotNet 114.223.62.* MailCrackerBotNet 114.223.63.* MailCrackerBotNet 114.224.29.* MailCrackerBotNet 114.225.55.* MailCrackerBotNet 114.225.83.* MailCrackerBotNet 117.68.172.* MailCrackerBotNet 117.68.173.* MailCrackerBotNet 117.68.174.* MailCrackerBotNet 117.68.175.* MailCrackerBotNet 117.84.210.* MailCrackerBotNet 117.90.1.* MailCrackerBotNet 117.90.2.* MailCrackerBotNet 117.90.3.* MailCrackerBotNet 117.90.4.* MailCrackerBotNet 117.90.5.* MailCrackerBotNet 117.90.6.* MailCrackerBotNet

- Specific vulnerabilities
 - Often blind
- Generic exploits
 - SQL Injections
 - PHP Injections
 - HTTP Headers injections
- Dumb vs Smart
 - Some mimic real users

Exploits Hunters

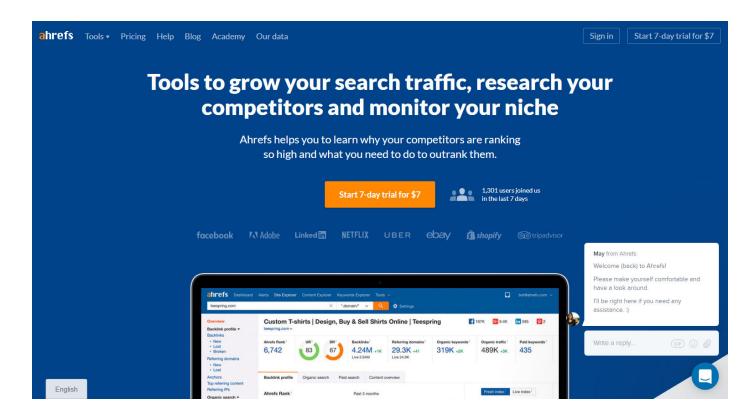
- No rules are really good
 - Too specific (catch just a few, that are also caught by other things)
 - Too generic (a lot of false positives)
- Some rules are really bad
 - Only false positives
 - 3rd party rules
- Generic rules / catch anything
 - Correlate across many data points



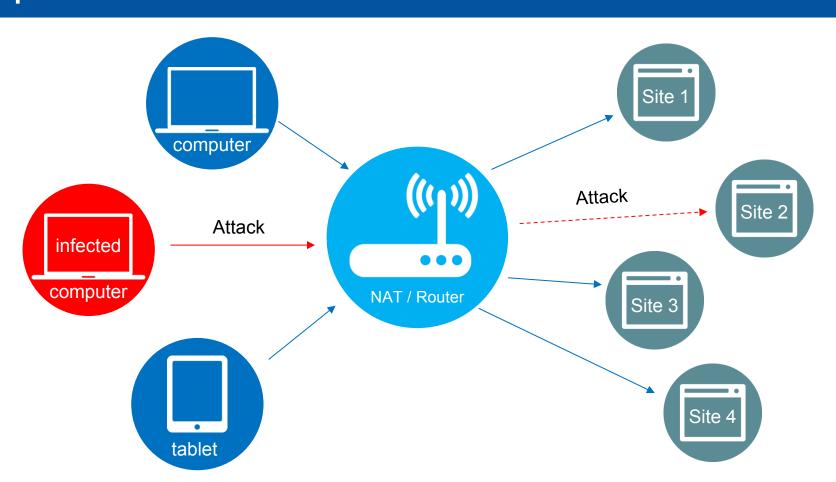
TRACK BAD GUYS/DEVELOP NEW RULES

- Was useful when we started
 - < 0.1% of blocked IPs would pass captcha
- Usefulness dropping
 - ~5% of blocked IPs pass it
 - anti-captcha.com, 1000
 captchas for 50c
- JS/splash screens are no help
 - PhantomJS, selenium, etc...

Captcha



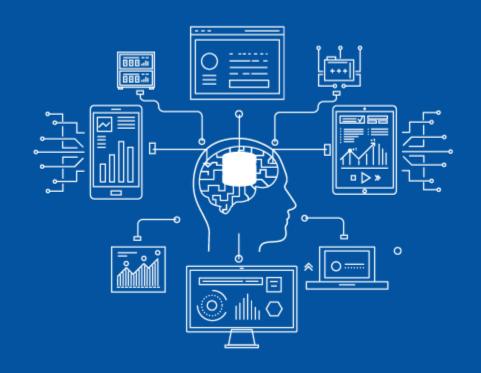
Captcha - Good Bots



Even ahrefs bot now passes captcha

Captcha / DHCP / NAT

Next Stage: bot filtering


human bot bot human crawler scanner bot human

human human human

- Feedback loop / captcha
 - Captcha bypass
 - Still important
- Look for anomalies & trends
- Next stage → client

Machine Learning

- NAT
- WebShield
 - NAT
 - Client tagging (cookie)
 - Proof of JS
 - mod_sec
 - Passive client fingerprinting
 - Detect impersonators
 - IP & URI fingerprinting / correlation

What is next

Thank you! Questions?