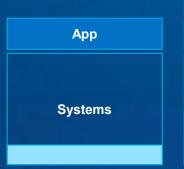
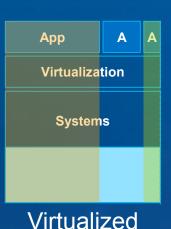


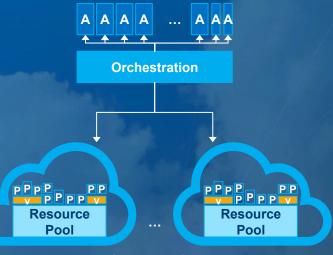
Cloud First Intel's strategy to accelerate and differentiate cloud growth


Das Kamhout, Sr. Principal Engineer @dkamhout March 2018



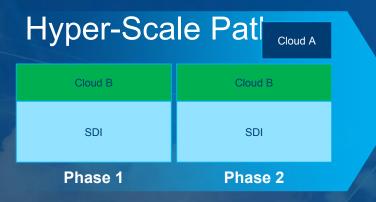
Data Center Computing Progression

Traditional



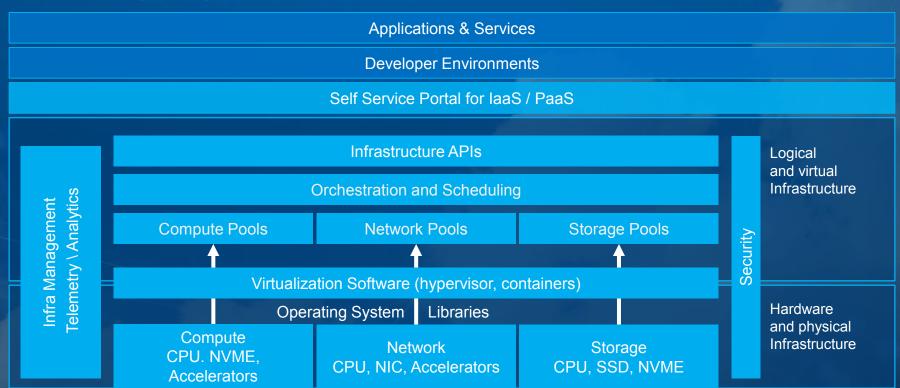
- 1. Multi-tenant
- 2. Rapid elasticity
- Self-service
- 4. Measured services

Hyper-Scale Cloud (B)


- 1. Highly optimized
- 2. Highly efficient
- 3. Managed cross-cloud
 - 4. Heterogeneous

Multiple computing models will persist for foreseeable future

Note: Clouds do not require virtualization


The Progression Merges

Infrastructure Solution Stack

Powers laaS, PaaS, and SaaS

Foundation built on Xeon Scalable Platform

Scalable Configuration of High-Performing Cores

Higher I/O and Memory
Bandwidth

Integrated Accelerators

Significant Improvement in Storage Performance

Workload Optimized Frameworks & Telemetry (e.g. Caffe*, Intel® DAAL, Intel® MKL, DPDK, SNAP*, SPDK)

Advancing virtually every aspect: Al to API

1.65X

average generational gains1

2X

data protection performance gen over gen² 4.2X

greater VM capacity vs 4-year-old server³

65%

lower total cost of ownership vs 4-year old server⁴

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks. Configuration: Refer to Performance Benchmark Disclosure of like Results have been estimated or simulated using internal Intel analysis or architecture simulation or modeling, and provided to you for informational purposes. Any differences in your system hardware, software or configuration may affect your actual performance. *Other names and brands may be claimed as the property of others.. Configurations: see Appendix A

Intel® Xeon® Scalable Processors

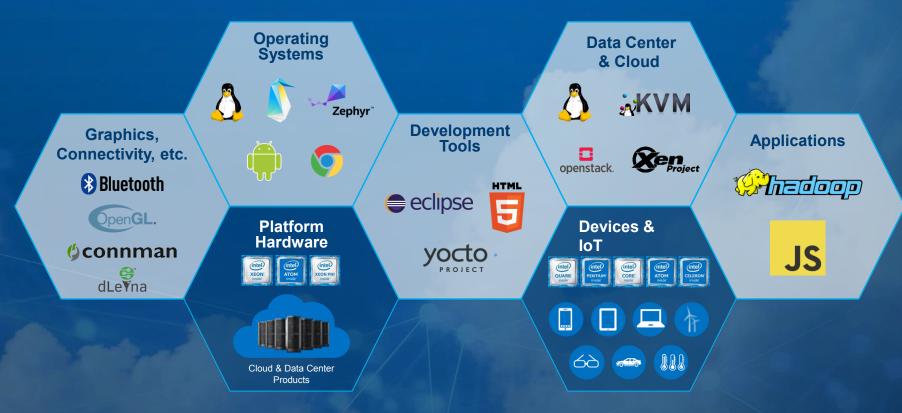
The Foundation for agile, secure, workload-optimized clouds

(intel

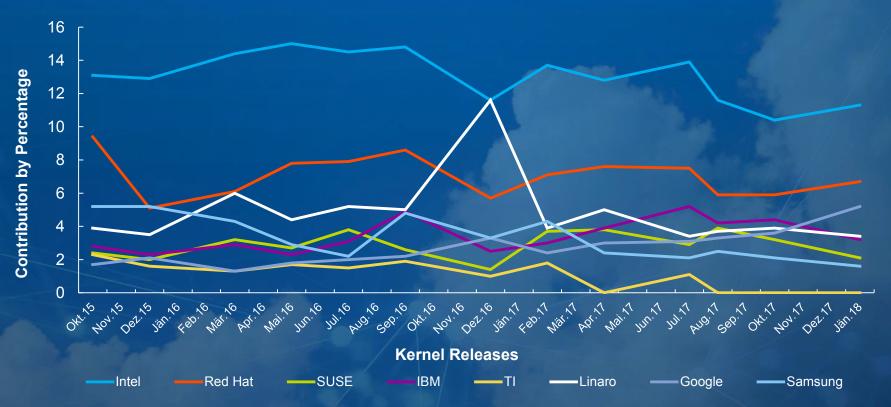
GOOSCALABLE ENT SCAL PARE WAR OWE ENT SCAL STANDARD RAS RY STAN

MODERATE TASKSLight TASKS

INTEL® TURBO BOOST TECHNOLOGY AND RMANCE ABNITEL® HYPER-THREADING TECHNOLISM WORKI ITYFOR MODERATE WORKLOADS

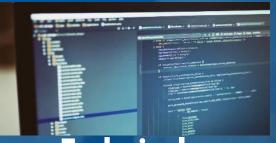

ST MAINSTREAM

Efficient


ENTRY

Intel's Contributions Optimize Features & Platforms

Linux Kernel Contributions



Source: http://lwn.net

Intel's Leadership in OpenStack

Foundation Board

Setting strategy

Platinum (permanent) board seat (Imad Sousou)

Individual (elected) board seat (Shane Wang)

Maximum representation allowed for a single company

Working Groups

Prioritizing development

Product WG

Enterprise WG

Telco WG

App Ecosystem Development WG

Diversity WG

Technical Leadership

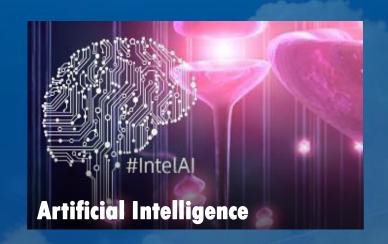
Code talks

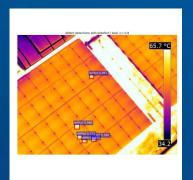
Project Technical Leads (PTLs) (related to usability)

Core reviewers

Top 10 contributor

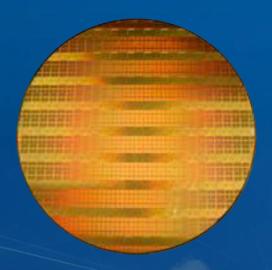
kubernetes



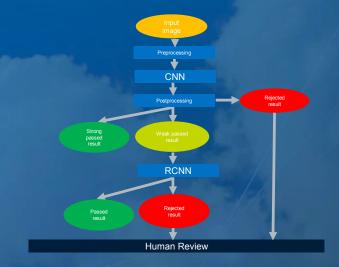


Prometheu:

High Risk Inspection by Drones: 1 CPU Node

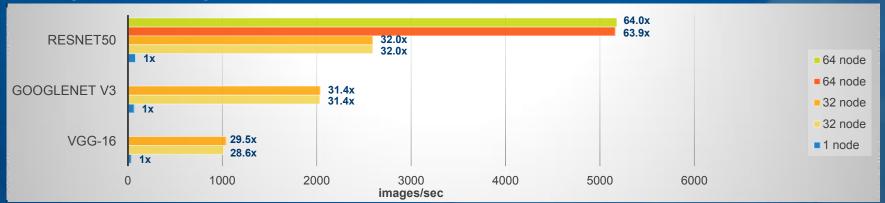


FRAMEWORK HARDWARE


Time to train: 6 hours

Silicon Package Defect Detection: 8 cpu nodes

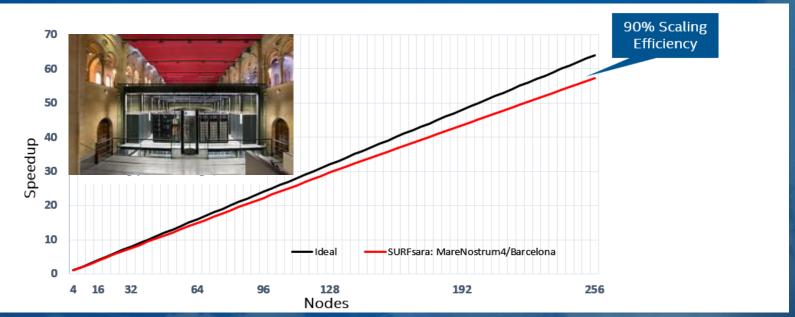
Training within one hour on 8 CPU nodes.



Scaling analysis: 32/64 CPU nodes

Throughput Scaling (1 node → 32/64 nodes)

Resnet-50 Time to Train Performance


System Configuration	Network Fabric	Minibatch Size	Top-1 Accuracy	Measured TTT
64-node Intel® Xeon® Scalable Processor system Intel® Xeon® Gold 6148 Processor based *	10Gb Ethernet	Al 8192 data me Intel® Ma	easured 7.5 m 19 mtel® Dischine Learning Scalir	Distribution bourse* and and Library (Intel® MLSL)

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit: https://www.intel.com/performance Source:
Intel measured as of February 2018.

(intel)

Scaling Efficiency (ResNet-50): 256 CPU NODES

V. Codreanu et al, "Achieving Deep Learning Training in less than 40 Minutes"

Intel® - SURFsara*
Research Collaboration

90% scaling efficiency with up to 74% Top-1 accuracy on 256 nodes

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or systems. Software and work-base intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or systems. Software patches and functions. Any change to any of those factors may cause in the performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause in the performance of that product when combined with other products. For more complete information visit: http://www.intel.com/performance. Source: Intel measured and performance of that products are the performance of the performanc

Time to Train: 1600 cpu nodes – UC Berkeley

ResNet-50 Time to Train

31 minutes **AlexNet Time to Train**

11 minutes

Large Batch Size method with Layer-wise Scaling Layer-wise Adaptive Rate Scaling (LARS) algorithm

Technical Report by Y. You, Z. Zhang, C-J. Hsieh, J. Demmel, K. Keutzer: https://people.eecs.berkeley.edu/~youyang/publications/imagenet_minutes.pdf

Optimization Notice: Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessors. Delase refer to the applicable product User and Reference Guides for more information recarding the specific instruction sets covered by this notice.

Performance estimates were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system. Software and workloade uses in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary intelligence of the performance of the performance of that product when combined with other products. For more complete information visit. http://www.intel.com/performance. Source: Intel measured or estimated as of February 2019

Cloud Service Progression

- Abstracts the Language RunTime/Execution context lifecycle
- Unit of Scale: Functions

Containers/PaaS

- Abstracts the OS
- Unit of Scale: Applications

VM3

- Abstracts the hardware
- Unit of Scale: Operating System (OS)

SaaS

- Not a development paradigm
- User simply uses app without hosting it themselves
- Infrastructure completely opaque

Cloud stack & bstraction level

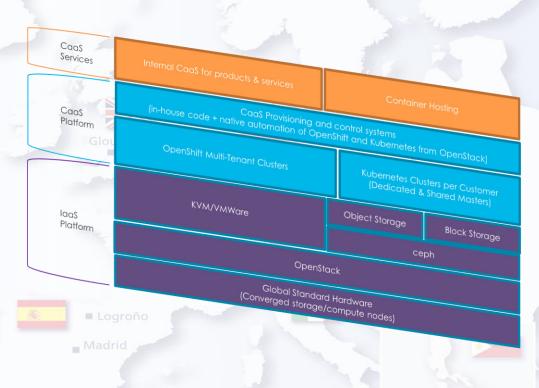
Functions Language RT

os

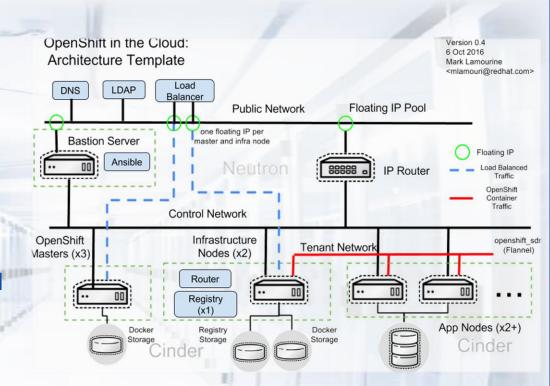
Hardware

Hosting Env.

Increasing focus on business logic


- Abstracts the physical hosting environment
- Unit of Scale: Hardware

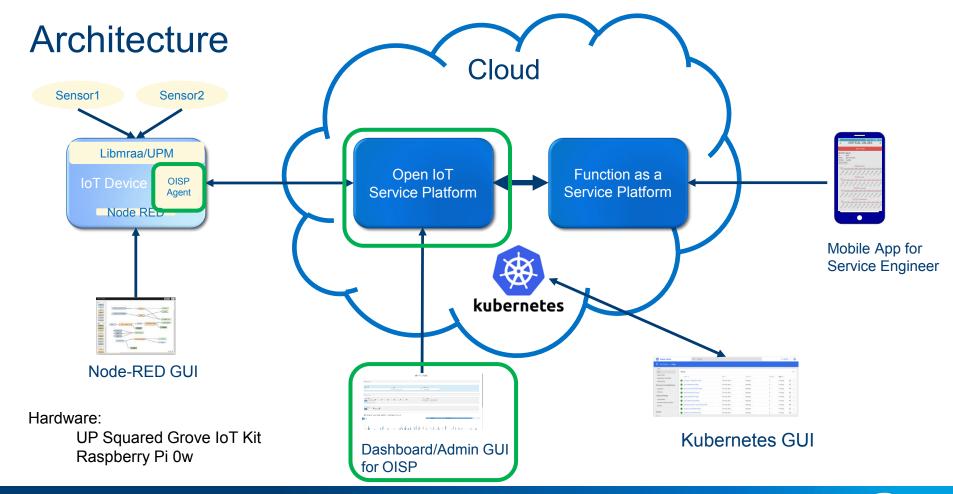
Decreasing concern (& control) over cloud stack implementation

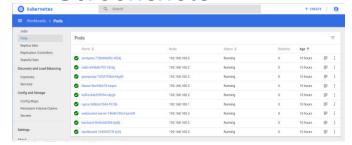

The "beautiness" of CaaS (Container as a Service)

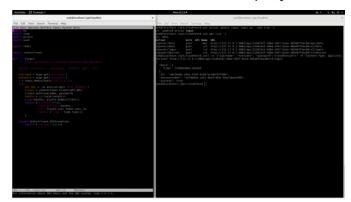
- SharedWebHosting eco-system
- Fast growing number of apps,tools and variants of dev stacks
- Managed and unmanaged
- Seamless transfer of apps/data

Inside the machine room

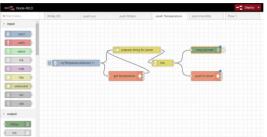
- High container density driven by Intel® Xeon® SP performance
- High speed east-west traffic
- Container relocation driven by Al based on telemetry





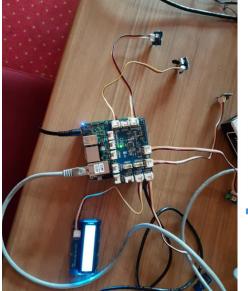


It's all real!


Screenshots

Kubernetes UI for OISP deployment

FaaS console to submit function



Node RED IoT configuration

Mobile App for Service Engineer

All My Charts

V but but

W but

W

Service/Admin GUI

Get Started with Intel's Cloud Solutions Today

Joint GTM

Work with Intel to create, market and sell new cloud services.

Try it yourself

Test drive new Intel® technologies through Cloud Insider Sandbox.

Learn


Go to <u>www.intel.com/CSP</u>, or join Intel® <u>Cloud Insider Program</u>.

in the hyper evolution of new apps and services

intel HW+SW investments are driving tech forward

Let's partner together to create the new normal

Notices & Disclaimers

Intel technologies' features and benefits depend on system configuration and may require enabled hardware, software or service activation. Performance varies depending on system configuration.

No computer system can be absolutely secure.

Tests document performance of components on a particular test, in specific systems. Differences in hardware, software, or configuration will affect actual performance. For more complete information about performance and benchmark results, visit http://www.intel.com/benchmarks.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete information visit http://www.intel.com/benchmarks.

Benchmark results were obtained prior to implementation of recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown." Implementation of these updates may make these results inapplicable to your device or system.

Intel® Advanced Vector Extensions (Intel® AVX)* provides higher throughput to certain processor operations. Due to varying processor power characteristics, utilizing AVX instructions may cause a) some parts to operate at less than the rated frequency and b) some parts with Intel® Turbo Boost Technology 2.0 to not achieve any or maximum turbo frequencies. Performance varies depending on hardware, software, and system configuration and you can learn more at http://www.intel.com/go/turbo.

Intel's compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for use with Intel microprocessors. Certain optimizations not specific to Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Cost reduction scenarios described are intended as examples of how a given Intel-based product, in the specified circumstances and configurations, may affect future costs and provide cost savings. Circumstances will vary. Intel does not guarantee any costs or cost reduction.

Intel does not control or audit third-party benchmark data or the web sites referenced in this document. You should visit the referenced web site and confirm whether referenced data are accurate.

© 2018 Intel Corporation.

Intel, the Intel logo, and Intel Xeon are trademarks of Intel Corporation in the U.S. and/or other countries. *Other names and brands may be claimed as property of others.

Configuration details 32/64-node CPU system Intel® Xeon® 6148 Gold processor with 10GB Ethernet / OPA

Benchmark Segment Benchmark type	AI/ML Training	Ethernet Configuration	Intel Corporation Ethernet Connection X722 for 10GBASE-T (rev 03)
Benchmark Metric	Images/Sec or Time to train in seconds		Intel Omni-Path HFI Silicon PCIe Adapter 100
Framework	Caffe	Omni-Path	Series [discrete]. OFED Version 10.2.0.0.158_72.
Topology	Resnet-50, VGG-16, GoogleNet V3	Configurations	48 port OPA switch, with dual leaf switches per
# of Nodes	32/64		rack 48 nodes per rack, 24 spine switches
Platform	Wolfpass (Skylake)	HT	ON
Sockets	28	Turbo	ON
	Xeon Processor code named Skylake, B0, ES2*,	Computer Type	Server
Processor	24c, 2.4GHz, 145W, 2666MT/s, QL1K	Framework Version	Internal Caffe version
	CPUID=0x50652		Internal ResNet-50 topology
BIOS	SE5C620.86B.01.00.0412.020920172159	Topology Version	Internal VGG-16 topology
Enabled Cores	24 cores / socket		Internal GoogleNet V3 topology
Platform	Wolfpass (Skylake)		ResNet-50 : 128 x # of node
Slots	12	Batch size	VGG-16 : 64 x # of node
Total Memory	192GB		GoogleNet V3: 64 x # of node
Memory Configuration	12x16GB DDR4 2R, 1.2V, RDIMM, 2666MT/s	Dataset, version	Imagenet, ILSVRC 2012 (Endeavor location),
Memory Comments	Micron MTA 18ASF2G72PDZ-2G6B1	Dataset, Version	JPEG resized 256x256
SSD	800GB Model: ATA INTEL SSDSC2BA80 (scsi)	MKLDNN	aab753280e83137ba955f8f19d72cb6aaba545ef
os	Oracle Linux Server 7.3, Linux kernel 3.10.0-	MKL	mklml_lnx_2018.0.1.20171007
	514.6.2.0.1.el7.x86 64.knl1	MLSL	2017.2.018

Compiler

Intel compiler 2017.4.196

Configuration details of Amazon* EC2 C5.18xlarge 1/32/64/128 node systems

Benchmark Segment

AI/ML

Benchmark type

Training

Benchmark Metric

Images/Sec

Framework

Intel Caffe

Topology

Resnet-50

of Nodes

1/32/64/128

Platform

Amazon EC2 C5.18xlarge instance

Sockets

28

Intel® Xeon® Platinum 8124M CPU @ 3.00GHz

Processor

(Skylake)

BIOS

N/A

Enabled Cores

18 cores / socket

Platform Slots

N/A

Total Memory

N/A 144GB

Memory Configuration N/A

SSD

EBS Optimized

200GB, Provisioned IOPS SSD

OS

Centos 7.4 (HVM)

Amazon Elastic Network Adapter (ENA) Network 25 Gbps of aggregate network bandwidth

Configurations Installed Enhanced Networking with ENA on Centos

Placed the all instances in the same placement group

HT ON Turbo ON Computer Type Server

Framework Version Intel Caffe version 1.0.6

Intel Caffe ResNet-50 and GoogleNet V3 internal

version available from **Topology Version**

https://github.com/intel/caffe/tree/master/models/intel

optimized models

GoogleNet V3: 64 x # of node Batch size ResNet-50: 128 x # of node

Dataset, version Imagenet, ILSVRC 2012, JPEG resized 256x256

MKLDNN c7ed32772affaf1d9951e2a93d986d22a8d14b88

MKL mklml lnx 2018.0.20170908

ecc6db2a133bab3894993baac54a01334c12b95a MLSL

with internal patch

qcc/q++: 4.8.5 Compiler Icc/icpc: 17.0.5

Ceph Community

Contributors by Company Organizations Red Hat Ordanove Ocso Hist Ordanove Ocso Ocso Hist Ordanove Ocso Ocso Hist Ordanove Ocso Ocs

2018 Focus areas

- NFVi optimizations for hyperconverged Ceph
- Containerized control plane for Ceph (ongoing)
- DPDK/SPDK-based Ceph OSD Support AT&T to deploy Ceph multi-OSD in OpenStack Helm
- Rack Scale Design

Community Advisory Board

- Red Hat (chair)
- Intel (Anjaneya Chagam)
- Canonical
- CFRN
- Cisco
- Fujitsu
- 42on
- SUSE
- SanDisk

Technical Leadership and Contributions

Upstreamed Features and Enhancements

- Intel Storage Acceleration Library (ISA-L) Integration
- Storage Performance Development Kit (SPDK) Integration for NVMe drivers
- BlueStore as new ObjectStore and RocksDB enhancements
- Cache Tiering
- CeTune tool

Available for Ceph but not upstream... yet

- Quick Assist Technology (QAT) Integration for Ceph Encryption and Compression
- Ceph Performance Tracing and Profiling
- Remote Direct Memory Access (RDMA) Enabling
- Persistent client-side cache

† Intel in Top 5 for the latest Luminous release References: https://metrics.ceph.com

